0%

Discrete_Mathematics_part2

离散数学 Discrete Mathematics

part 3 Number Theory 数论

basic knowledge 基础知识

  • Let $Z$ be the set of integers. Let $a,b\in Z$ and $a\neq 0$

    • a devides b (整除): there is an integer $c\in Z$ such that $b=ac$
      • a is a divisor(因子)of b;b is mutiple of a
      • $a \mid b$: a divides b ;$a\nmid b$: a does not divide b
    • $n \in {2,3,\ldots}$is a prime if the only positive divisors of n are 1 and n.
    • if n is not a prime , n is a composite(合数)(不讨论0,1)
    • 素数无穷多构造。N=最大素数以下所有数字素数只和加一,和所有已知素数互质,矛盾。
  • The Well-Ordering Property良序公理:

    ​ every non-empty subset of $N(Z^+)$ has a least element .$//\forall S\in p(N) \backslash {\emptyset},\exists s_0\in S$ such that $s_0\leqslant s$ for all $s \in S$.

  • Division Algorithm带余除法:

    ​ let $a,b\in Z$and b>0.Then there are unique integers q,r such that $0\leqslant r<b$ and $a=bq+r$.

    prove:

    • existence:

      let $S=\{a-bx:x\in Z \ and\ a-bx\geqslant0\}.$Then$S\neq \emptyset \ and\ S \subseteq N$,$S$ has a least element , say $r=a-bq\geqslant0$

      ​ if $r\geqslant b$,then $r-b=a-b(q+1)\in S$ and $r-b<r$.The contradiction shows that $0\leqslant r<b.$

    • uniqueness:Suppose that $q’,r’\in Z,0\leqslant r’<b$ and $a=bq’+r’$

      ​ Recall that $a=bq+r,0\leqslant r<b$.Then $b(q-q’)=r’-r\in (-b,b)$. It must be the case that $q=q’$ and thus $r=r’$.

  • mod: a mod b is defined as r(let $a,b\in Z$and b>0.Then there are unique integers q,r such that $0\leqslant r<b$ and $a=bq+r$.)

  • $\lfloor \alpha \rfloor$:floor of $\alpha$,$\leqslant \alpha$

  • $\lceil \alpha \rceil$:ceil of $\alpha$,$\geqslant \alpha$

  • Greatest Common Divisor(GCD):

    • common divisor 公因子: a integer d such that $d|a,d|b$

    • greatest common divisor 最大公因子(GCD),gcd(a,b) : the largest common divisor of a,b

    • relatively prime 互素:gcd(a,b)=1

    • $\exists s,t\in Z,st\ gcd(a,b)=as+bt.$

    • $d=gcd(a,b)=gcd(a/d,b/d)=1$

    • 计算gcd,辗转相除法,image-20210429221404634

    • properties :image-20210429215044331

      or 可兼有的或 \lor

  • theorem(Congruence): Let $n\in Z^+$. For any $a\in Z$, there is a unique integer $r$, such that $0\leqslant r< n$ and $a\equiv r \pmod n$.

    prove:

    • Existence: by division algorithm,$\exists q,r\in Z$ such that $0\leqslant r<n,a=qn+r$

      ​ $a\equiv r\pmod n$

    • Uniqueness:Suppose that $0\leqslant r’ <n$ and $a\equiv r’\pmod n$

      ​ $|r-r’|<n$ and $r\equiv r’\pmod n$

      ​ $|r-r’|<n$ and $n|(r-r’)$

      ​ $r=r’$

  • 加减乘除法时间复杂度

  • Prime Number Theorem : for $x\in R^+,\pi(x)=\sum_{p\leqslant x }1$:the number of primes $\leqslant x$

    • image-20210502230035637

    • image-20210502230057539

      Fundamental Theorem of Arithmetic (算术学的基本定理)

  • theorem: every intr=eger n>1 can be uniquely written as $n=p_1^{e_1}\cdots p_r^{e_r}$,where $p_1,\dots,p_r$ are distinct primes ,$p_1<\cdots <p_r$ and $e_1,\ldots,e_r \geqslant 1$.

  • prove: 第二类数学归纳法 mathematical induction

    • existence:

      • 显然n=2,3,4,5满足

      • 假设n$\leqslant$k满足, Induction hypothesis: suppose true for integers $2\leqslant n \leqslant k$

      • Prove the statement for n=k+1

        • if(n=k+1 is a prime) $n=(k+1)^1$ QED

        • else n=k+1 is composite ,$n=n_1n_2$,by introduction hypothesis,

          $n1=p_1^{\alpha_1 }\cdots p_r^{\alpha_r},n2=q_1^{\beta_1 }\cdots q_s^{\beta_s}$

          $n=n_1n_2=p_1^{\alpha_1 }\cdots p_r^{\alpha_r}\cdot q_1^{\beta_1 }\cdots q_s^{\beta_s}$has the expected form.

    • uniqueness:

      • Suppose that $n=p_1\cdots p_r=q_1\cdots q_s$,where $p_i,q_i$ are all primes.
      • $p_1|n \Rightarrow p_1|q_1\cdots q_s \Rightarrow p_1|q_j$ for some $j\Rightarrow p_1=q_j$
      • Without loss of generality, we suppose that j=1
      • Then $p_2\cdots p_r=q_2\cdots q_s$
      • The theorem is true by induction

Ideal 理想

  • Definion:Let $\emptyset \neq I \subseteq Z$.I is called an ideal of Z if

    • $a,b\in I\Rightarrow a+b\in I$;and
    • $a\in I,r\in Z \Rightarrow ra\in I$
  • example:$kZ={\ldots , -2k,-k,0,k,2k,\ldots}$is an ideal of Z for every $k\in Z$

    • theorem:Let I be an ideal of Z. Then $\exists d \in Z$ such that $I=dZ$
      • prove:image-20210429142553700
  • Definion:Let $I_1,I_2$ be ideals of Z. Then the sum of $I_1$ and $I_2$ is define as $I_1+I_2={x+y:x\in I_1 ,y\in I_2}$

  • theorem:$I_1+I_2$ is an ideal of Z

    • $$\forall a,b\in I_1+I_2,a+b\in I_1+I_2$$
      • $\exists x_1,x_2\in I_1,y_1,y_2\in I_2$ such that $a=x_1+y_1;b=x_2+y_2$
      • $$a+b=(x_1+x_2)+(y_1+y_2)\in I_1+I_2$$
    • $$\forall a \in I_1+I_2 ,r\in Z ,ra\in I_1+I_2 $$
      • $\exists x\in I_1,y\in I_2$ such that $a=x+y$
      • $ra=(rx)+(ry)\in I_1+I_2$
  • example:$3Z+5Z=Z;4Z+6Z=2Z$

  • $aZ+bZ=gcd(a,b)Z$

    prove:image-20210429214654669

    PS: w.l.o.g.:without loss of generality (不失一般性)

image-20210429222601584
二元关系指,R是A$\times$B 的子集,具体我感觉怪怪的,不是很明白。

Congruence

  • definition: Let $a\in Z ,n\in Z^+$

    $[a]_n=a+nZ={a+nx:x\in Z}$ is called the residue class 剩余类of $a$ mod $n$

    any element in this class is called a representative代表元.

  • example: n=6,$[0]_6={\ldots,-12,-6,0,6,12,\ldots};[1]_6={\ldots,-11,-5,1,7,13,\ldots}$

  • image-20210429232440578

$Z_n,Z_n^*$

  • $Z_n$:

    • Define: Letn be any positive integer. $Z_n$ is defined as the set of all residue classes modulo n.

    • $Z_n={[0]_n,[1]_n,\ldots,[n-1]_n}={[1]_n,[2]_n,\ldots,[n-1]_n,[n]_n}=\cdots$

      • addition: $[a]_n+[b]_n=[a+b]_n$
      • subtraction:$[a]_n-[b]_n=[a-b]_n$
      • multiplication:$[a]_n\cdot [b]_n=[a\cdot b]_n$
    • Remark(well-defined):if $a\equiv a’\pmod n$ and $b\equiv b’\pmod n$,then$a\pm b\equiv a’\pm b’\pmod n$ and $ab=a’b’\pmod n$.

    • Hence,$[a]_n\pm [b]_n=[a’]_n+[b’]_n;[a]_n\cdot [b]_n=[a’]_n\cdot [b’]_n$

      • $$
        a\equiv a’\pmod n\Rightarrow n|(a-a’) \Rightarrow \exists x \ such\ that\ a-a’=nx\
        b\equiv b’\pmod n\Rightarrow n|(b-b’) \Rightarrow \exists x \ such\ that\ b-b’=ny\
        (a+b)-(a’+b’)=nx+ny\
        (a-b)-(a’-b’)=nx-ny\
        ab-a’b’=a(b-b’)+b’(a-a’)=any+b’nx
        $$
  • $Z_n^*$:

    • inverse:Let $n\in Z^+$ and let $[a]_n \in Z_n$.$[s]_n\in Z_n$ is called an inverse of $[a]_n$ if $[a]_n[s]_n=[1]_n$.
    • division:if $[a]_n$ has an inverse $[s]_n$,define $\frac{[b]_n}{[a]_n}=[b]_n\cdot [s]_n$
    • theorem: Let $n\in Z^+$.$[a]_n\in Z_n$ has an inverse if and only if $gcd(a,n)=1$
      • Only if: $\exists s\ s.t.[a]_n[s]_n\equiv [1];\exists t,as-1=nt;gcd(a,n)=1$
      • if:$\exists s,t\ s.t.as+nt=1;as\equiv 1\pmod n$
    • Let $n\in Z^+$.Define $Z_n^*={[a]_n\in Z_n:gcd(a,n)=1}$
      • if n is prime ,then $Z_n^*={1,2,\ldots,n-1}$
      • if n is composite ,then $Z_n^*\subset Z_n$
      • example:$Z_5^*={1,2,3,4};Z_6^*={1,5}$

        Euler’s Phi Function ($\phi (n)$)

  • $\phi(n)=|Z_n^*|$ for every $n\in Z^+$ ($\phi (n)$ is the number of intergers $a\in [n]$ such that $gcd(a,n)=1$)

  • property:

    • if p is a prime, then $\phi(p^e)=p^{e-1}(p-1)$ for any $e\in Z^+$
      • prove:let $x\in [p^e]$. Then $gcd(x,p^e)\neq 1$ iff$p|x$ iff$x=p,2p,\ldots,p^{e-1}\cdot p$
      • $\phi(p^e)=p^e-p^{e-1}=p^{e-1}(p-1)$
    • if n=pq for two different primes p and q ,then $\phi(n)=(p-1)(q-1)$.
      • prove容斥: $A={1,2,\ldots,pq},A_p={x\in A:p|x},A_q={x\in A:q|x}$
      • $Z_n^*=A-A_p\cup A_q$
      • $|Z_n^*|=|A-A_p\cup A_q|=|A|-|A_p\cup A_q|=|A|-|A_p|-|A_q|+|A_p\cap A_q|=(p-1)(q-1)$
  • Euler’s Theorem:Let $n\geqslant1$ and $\alpha \in Z_n^*$. Then$\alpha^{\phi(n)}\equiv 1 \pmod n$

  • image-20210501232435801
    image-20210501232452974

  • Fermat’s Little Theorem:if p is a prime and $\alpha \in Z_p$. Then $\alpha^p \equiv \alpha \pmod p$.

  • • This is a corollary of Euler’s theorem for $n=p$

Cryptography_rsa

    1. 凭空产生两个质数$p,q$
    2. 设$N=p \times q$
    3. 根据欧拉函数$r=\phi(N)=(p-1)(q-1)$
    4. 凭空产生一个小于r的整数$e$使得$e$和$r$互质​
    5. 求$d$使得$ed\equiv1\pmod r$
    6. 销毁$p,q$,没有人知道$p,q$是多少
      得出$(N,e)$是公钥,$(N,d)$是私钥
      参考链接
  • Alice得到公钥和私钥,Alice把公钥告诉Bob,自己把私钥藏起来不告诉任何人。Bob给Alice发消息。

    • 加密:
      假设Bob的消息是$n$,密码是$c$,手上有公钥$(N,e)$
      $$
      c\equiv n^e \pmod N
      $$
      Bob将加密后的$c$发给Alice

    • 解密:

      Alice得到密码$c$,根据私钥$(N,d)$
      $$
      n \equiv c^d \pmod N
      $$
      解码得到$n$

    • 原理:
      $$
      c\equiv n^e \pmod N \
      c^d \equiv n^{e\cdot d} \pmod N
      $$
      因为$e\cdot d \equiv 1 \pmod r$,即$e\cdot d \equiv h \cdot r +1 \pmod N$,其中$h$是自然数
      $$
      c^d\equiv n^{h\cdot r+1}\pmod N\
      c^d\equiv n^{h\cdot \phi(n)+1}\pmod N\
      c^d\equiv n\cdot n^{h\cdot \phi(n)}\pmod N\
      c^d\equiv n\cdot (n^{\phi(n)})^h\pmod N\
      $$
      根据欧拉定理$a^{\phi(n)}\equiv 1 \pmod n$
      $$
      c^d \equiv n\times 1^h \pmod N\
      c^d \equiv n \pmod N
      $$

  • image-20210501235124705

  • image-20210501235250730

  • 快速幂,取模Modulo Exponentiation(Square-and-Multiply Algorithm)

  • image-20210502003438123

  • Euclidean Algorithm (EA)辗转相除算gcd

  • Extended Euclidean Algorithm (EEA) 算as+bt的s和t
    image-20210502003751598

    image-20210502003729049

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#gcd
def gcd(a,b):
if(b==0):
return a
return gcd(b,a%b)
#exgcd gcd(a,b)=as+bt
def EEA(a,b):
if b==0:
return (1,0)
(s,t)=EEA(b,a%b)
return (t,s-a//b*t)
#b=a^{-1} (mod n)
def inverse(a,n):
b = EEA(a,n)[0]
if(b<0):
b+=n
return b
#a^e mod n
def multiply_and_square(a,e,n):
if(e==0):
return 1
res = multiply_and_square(a,e//2,n)
if(e%2==1):
return (res*res*a)%n
else:
return (res*res)%n
#rsa_enc
def RSA_enc(p,q,e,m):
c = multiply_and_square(m,e,p*q)
return c
#rsa_dec
def RSA_dec_given_pq(p,q,e,c):
m = multiply_and_square(c,inverse(e,(p-1)*(q-1)),p*q)
return m

图论 Graph

basis knowledge
  • graph图 $G=(V,E)$ is defined by a non empty set V of vertices and aset of E of edges.

  • vertices顶点 $|V|$ is called the order(阶数) of G.

  • edges边

  • endpoint端点

  • Infinite Graph 无限图 $|V|=\infty$ or$|E|=\infty$

  • Finite Graph 有限图 $|V|< \infty$ or $|E| < \infty$

  • Types of Graphs

    • are edges of G directed ?
      • directed graph 有向图
      • undirected graph 无向图
    • multiple edges
      • simple graph 简单图
      • multigraph 多重图
    • loops自环
      • pseudograph伪图
  • Special Simple Graph:

    • complete graph完全图:

      • $K_n:V={v_1,\ldots,v_n};E=\Large{$${v_i,v_j}$ $:i\neq j\leq n$ $\Large}$

      • image-20210613232949681

    • cycle环,圈:

      • $C_n:V={v_1,\ldots,v_n};E=\Large{$${v_1,v_2},{v_2,v_3},\ldots,{v_n,v_1}$$\Large}$
      • image-20210613233030824
    • wheel轮:

      • $W_n:V={v_0,v_1,v_2,\ldots,v_n};E=$$\Large{$${v_1,v_2},\ldots,{v_n,v_1}$$\Large}$$\bigcup$$\Large{$${v_0,v_1},\ldots,{v_0,v_n}$$\Large}$
      • image-20210613233209958
    • n-Cubes方体:

      • $Q_n:V={0,1}^n;E={$${u,v}:d(u,v)=1}$即u,v二进制只有一位不一样
      • $d(u,v)=|{i\in [n] :u_i \neq v_i}|$即u,v二进制有几位不一样
      • image-20210613233315227
  • Adjacency List邻接表:
    Let $G = (V, E)$ be a graph with no multiple edges. The adjacency list of $G$ is a list the vertices of the graph and all adjacent vertices
    $v_i,v_j \in V$ are adjacent if ${v_i,v_j}$ or $(v_i,v_j)$ is an edge

    image-20210614153913422

    image-20210614153924554

  • adjacency matrix邻接矩阵 :

    let $G=(V={v_1,\dots,v_n},E)$ be a simple graph. The adjacency matrix of $G$ is an $n\times n$ matrix $A=(a_{ij})$, where
    $$
    a_{ij}=\left{ \begin{array}\ 1 & {v_i,v_j}\in E \ 0 & {v_i,v_j}\notin E\end{array}\right.
    $$
    image-20210614155156083

  • multiplicity重数:
    let $G=(V={v_1,\dots,v_n},E)$ be an undirected graph. The adjacency matrix of $G$ is an $n\times n$ matrix $A=(a_{ij})$, where:

    • $a_{ij}=$ multiplicity of ${v_i,v_j}$ when $i \neq j$
    • $a_{ii}=$ the number of loops from $v_i$ to itself.
  • remark: the adjacentcy matrix of a simple graph is always symmetric.

  • incidence matrix关联矩阵:
    let $G=(V={v_1,\dots,v_n},E={e_1,\ldots,e_m})$ be undirected.THe incidence matrix of $G$ is an $n\times m$ matrix $B=(b_{ij})$,where
    $$
    b_{ij}=\left{ \begin{array}\ 1 & if\ e_j\ is\ incident\ with\ v_i\ 0 & otherwise\end{array}\right.
    $$

    image-20210614160751342

  • subgraph:

    image-20210614161813247

    image-20210614162038852

    edge or vertex operation
  • remove/add an edge or vertex

    • edge:

      image-20210614170153532

      image-20210614170228175

    • vertex:

      image-20210614170340758

  • edge contyractions

    image-20210614170250543

  • union

    image-20210614174245934

  • complement graph补图:

    image-20210614174407136

    $G\cup \overline{G}$ is a complete graph($K_n$).

degree and connection
  • degree:

    • two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u and v are endpoints of an edge e of G. Such an edge e is called incident with the vertices u and v and e is said to connect u and v.

    • Neighbor:

      the set of adjacent vertices.

    • degree:

      the number of neighbors.

    image-20210614210701460

    • isolated: $degree = 0$
    • pendant: $degree = 1$
    • 对上面的图片,⑤ is pendant;⑥ is isolated
  • Handshaking Theorem:

    • Let $G=(V,E)$ be an undirected graph with m edges. Then
      $$
      2m=\sum_{v \in V}deg(v)
      $$
      (Note: all undirected graph including simple graph,multigraph(multiple edges),pseudograph(loops))
    • An undirected graph has an even number of vertices of odd degree.
      sketch of pf:Let $V_1$ and $V_2$ be the set of vertices of even degree and theset of vertices of odd degree,respectively,in an undirected graph $G=(V,E)$ with m edges.Then
      $$2m=\sum_{v \in V}deg(v)=\sum_{v \in V_1}deg(v)+\sum_{v \in V_2}deg(v)$$
  • degree for directed graph:
    Let $G=(V,E)$ be a directed graph. If $(u,v)\in E$, we say that $u$ is adjacent to $v$ and $v$ is adjacent from $u$.

    • $u$ is the initial vertex of $(u,v)$; $v$ is the terminal vertex of $(u,v)$.
    • in-degree
    • out-degree

    image-20210614214303836

  • Handshaking Theorem for directed graph:

    • Let $G=(V,E)$ be a directed graph. Then
      $$
      \sum_{v \in V}deg^-(v)=\sum_{v \in V}deg^+(v)=|E|
      $$
Isomorphism
  • Definition:The simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic同构 if there is a bijection $\sigma :V_1\rightarrow V_2$ such that ${u,v}\in E_1 \Leftrightarrow {\sigma(u),\sigma(v)}\in E_2$
    • $\sigma$ is called an isomorphism同构映射
    • nonisomorphic: not isomorphicimage-20210614215315412
image-20210614215459018
  • Determine whether two graphs are isomorphic:
    Definition: Graph invariants are properties preserved by graph isomorphism. For example,
    • The number of vertices
    • The number of edges
    • The number of vertices of each number of degrees
    REAMRKS: The graph invariants can be used to determine if two graphs are isomorphic or not.
Bipartite Graph and Match
  • Bipartite Graph二分图、二部图

    • V can be devided to two disjoint part,such that there are not any edges in each part and all edges are connect two parts.
    • image-20210614223957101
    • Definition: $G=(V,E)$ is a bipartitie graph if $V$ has a partition ${V_1,V_2}$ such that $E\subseteq {$${u_1,u_2}:u_1\in V_1,u_2\in V_2}$.
      • $(V_1,V_2)$ is a bipartition of the vertex set $V$.
    • image-20210614224504209
  • Complete Bipartite Graph完全二部图:

    • A complete bipartite graph is a graph $K_{m,n}=(V,E)$ with $V={x_1,\ldots,x_m}\cup {y_1,\ldots,y_n}$ and $E={$${x_i,y_j}:i\in [m],j\in [n]}$
    • image-20210614234515056
    • image-20210614234601349
    • image-20210614235736731
  • Matching

    • Definition:
      A matching in a simple graph $G=(V,E)$ is a subset $M\subset E$ such that no two edges in M are incident with the same vertex.
      A maximum matching is a matching with the largestnumber of edges.
      A matching in a bipartite graph with $V=V_1\cup V_2$ is a complete matching from $V_1$ to $V_2$ if every vertex in $V_1$ is the endpoint of an edge in the matching.

    • Hall’s Marriage Theorem:
      A bipartitie graph $G=(X\cup Y,E)$ has a complete matching from $X$ to $Y$ iff $|N(A)|\geqslant |A|$ for any $A\subseteq X$

      image-20210615001819265

      image-20210615001825992

详细证明略去,这次不考

Path,connected, disconnected
  • Path

    • Definition:
      image-20210615002943581

    • for directed path:
      image-20210615003154242

  • Connectivity

    • Definition:
      An undirected graph $G$ is said to be connected if there is a path between any pair of distinct vertices.
      • Graph of order 1 is connected; the complete graph $K_n$ is connected
      • disconnected非连通的: not connected
      • disconnect G: remove vertices or edges to produce a disconnected subgraph
    • Theorem:Let $G=(V,E)$ be a connected undirected graph. Then there is a simple path between any pair of distinct vertices.
      证明同上略。
    • Connected Component:
      image-20210615004755824
    • • $v\in V$ is a cut vertex割点if $G-v$ has more connected components than G
      • $e\in E$ is a cut edge割边、bridge桥if $G-e$ has more connected components than G
  • Find cut vertices and cut edge(s)

    • Vertex Connectivity

      • Definition:A connected undirected graph $G=(V,E)$ is said to be nonseparable不可分的if $G$ has no cut vertex.(one point)
      • Let $G=(V,E)$ be a connected simple graph.
        • vertex cut点割集: A subset $V’\subseteq V$ such that $G-V’$ is disconnected
        • vertex connectivity点连通度$\kappa(G)$ : the minimum number of vertices whose
        removal disconnect $G$ or results in $K_1$; equivalently,
        • if $G$ is disconnected, $\kappa(G)=0$; //additional definition
        • if $G=K_n$,$\kappa(G)=n-1$ //$K_n$ has no vertex cut
        • else,$\kappa(G)$ is the minimum size of a vertex cut of $G$
    • Theorem:
      image-20210615011734327

    • Property:

      image-20210615012332677

    • Edge connectivity

      • Definition:Let $G=(V,E)$ be a connected simple graph. $E’\subseteq E$ is an edge cut边割集of $G$ if $G-E’$ is disconnected.
      • Let $G=(V,E)$ be a connected simple graph.
        The edge connectivity边连通度($\lambda(G)$) of $G$ is defined as below:
        • $G$ disconnected: $\lambda(G)$ = 0
        • $G$ connected:
        • $|V|=1$: $\lambda(G)$ = 0
        • $|V|>1$: $\lambda(G)$ is the minimum size of edge cuts of $G$.
    • Theorem:
      image-20210615020543182

    • Let $G=(V,E)$ be a simple graph. Then $\kappa(G)\leqslant\lambda(G)\leqslant\delta(G)$,where $\delta(G)=min_{v\in V} deg(v)$ is the least degree of $G’s$ vertices.
      prove(homework)

  • Connected Directed Graphs

    • image-20210615021258988
  • 路径同构不变性image-20210615021845809

    Euler circuit, Euler path, Hamilton Circuits, Hamilton path
  • Counting Paths Between Vertices

    证明详细分析见后,期末1/5

image-20210615022004836

image-20210615022023000

image-20210615022205569

  • Euler circuit and Euler path
    image-20210615023003182
    image-20210615023128985

    • Necessary and sufficient condition for Euler circuit
      证明后面详细分析,期末2/5
      image-20210615023444640

    • 欧拉循环算法
      image-20210615023821104

    • 欧拉路径

      image-20210615024304039

  • Hamilton Paths and Circuits

    • Definition: Let $G=(V,E)$ be a graph.
      • Hamilton Path: A simple path that passes through every vertex
      exactly once.
      • Hamilton Circuit: A simple circuit that passes through every
      vertex exactly once.
      image-20210615025139183

    • Determine if there is a Hamilton circuit in a given graph 0?
      • This problem is NP-Complete. //that means very difficult

    • Necessary conditions on Hamilton circuit.
      • If 0 has a Hamilton circuit, then G doesn’t have a vertex of degree 1
      • If 0 has a Hamilton circuit and a vertex of degree 2, then a Hamilton circuit of 0 traverses both edges.

    • Sufficient conditions for existence

      image-20210615025504489

      image-20210615025509979

      image-20210615025634489

Planar Graph
  • image-20210615030151027

  • $K_{3,3},K_5$ 都不是planar

  • Regions:

    • DEFINITION: Let $G=(V,E)$ be a planar graph. Then the plane is divided into several regions面by the edges of $G$.
    • image-20210615033723462

大括号无序点对,无向边;小括号有序点对,有向边。
已整理ppt:lec1,2,3,4(未举例);lec7,8,9,10,11,12

lec5,lec6(简要)

lec13,14,15,16,17

lec18,19,20,21,22,23,24,25,26

------------- The end -------------

Welcome to my other publishing channels